
An Introduction to String Solvers

Shuanglong Kan

Automated Reasoning Group, TU Kaiserslautern

Table of contents

1. Why strings are important in Computer Systems

2. What is a String Solver

3. Model Checking Regular Language Constraints

4. Paper List for String Solvers

1

Why strings are important in

Computer Systems

Strings in Programming Languages

Javascript code snipt

var x = goog.string.htmlEscape(name);

var y = goog.string.escapeString(x);

nameElem.innerHTML =

’<button onclick= "viewPerson(\’’ + y + ’\’)">’ +

x + ’</button>’;

• htmlEscape: Escapes double quote ‘”’ and single quote ‘”

characters in addition to ‘&’, ‘<’, and ‘>’ so that a string can be

included in an HTML tag attribute value within double or single

quotes.

• escapeString: Takes a string and returns the escaped string for

that input string

2

Strings in Programming Languages

A Python code snippet

s1, s2: strings with delimiter ’-’

for x in s1.split(’-’)

for y in s2.split(’-’)

assert(len(x) > len(y))

}

3

Cross Site Scripting (XSS) attack

XSS attack: The attacker aims to execute malicious scripts in a web

browser of the victim by including malicious code in a legitimate web

page or web application.

Server-side pseudocode:

print "<html>"

print "<h1>Most recent comment</h1>"

print database.latestComment

print "</html>"

Malicious comments (injections)

<script>doSomethingEvil();</script>

4

Cross Site Scripting (XSS) attack

XSS attack: The attacker aims to execute malicious scripts in a web

browser of the victim by including malicious code in a legitimate web

page or web application.

Server-side pseudocode:

print "<html>"

print "<h1>Most recent comment</h1>"

print database.latestComment

print "</html>"

Malicious comments (injections)

<script>doSomethingEvil();</script>

4

Cross Site Scripting (XSS) attack

XSS attack: The attacker aims to execute malicious scripts in a web

browser of the victim by including malicious code in a legitimate web

page or web application.

Server-side pseudocode:

print "<html>"

print "<h1>Most recent comment</h1>"

print database.latestComment

print "</html>"

Malicious comments (injections)

<script>doSomethingEvil();</script>

4

Filtering XSS attacks by regular expressions

Malicious comments

<script>doSomethingEvil();</script>

Regular expressions
.⇤ < script > .⇤ < /script > .⇤

We need to check
comment 2 L(.⇤ < script > .⇤ < /script > .⇤)

5

Filtering XSS attacks by regular expressions

Malicious comments

<script>doSomethingEvil();</script>

Regular expressions
.⇤ < script > .⇤ < /script > .⇤

We need to check
comment 2 L(.⇤ < script > .⇤ < /script > .⇤)

5

Filtering XSS attacks by regular expressions

Malicious comments

<script>doSomethingEvil();</script>

Regular expressions
.⇤ < script > .⇤ < /script > .⇤

We need to check
comment 2 L(.⇤ < script > .⇤ < /script > .⇤)

5

Amazon Cloud Access Control Policies

Amazon policy control examples:

((allow,

principal : students,

action : getObject,

resource : cs240/Exam.pdf),

(allow,

principal : tas,

action : getObject,

resource : (cs240/Exam.pdf, cs240/Answer.pdf)))

6

Amazon Cloud Access Control Policies

Amazon policy control examples:

(allow,

principle: *,

action: getObject,

resource: cs240,

condition : (StringEquals, aws:SourceVpc, vpc-111bbb222),

(StringLike, s3:prefix, cs240/Exam*)

)

• “*” denotes any string (.*)

• “StringEquals” denotes the value of aws:SourceVpc is equal to

vpc-111bbb222

• “StringLike” denotes membership constraints, that is, the value of

s3:prefix is a filename under the directory cs240/Exam*. More

formally, prefix 2 L(cs240/Exam.⇤)

7

Amazon Cloud Access Control Policies

Amazon policy control examples:

(allow,

principle: *,

action: getObject,

resource: cs240,

condition : (StringEquals, aws:SourceVpc, vpc-111bbb222),

(StringLike, s3:prefix, cs240/Exam*)

)

• “*” denotes any string (.*)

• “StringEquals” denotes the value of aws:SourceVpc is equal to

vpc-111bbb222

• “StringLike” denotes membership constraints, that is, the value of

s3:prefix is a filename under the directory cs240/Exam*. More

formally, prefix 2 L(cs240/Exam.⇤)

7

Regex Denial-of-Service (ReDos) Attack

• ReDos is an algorithmic complexity attack

• It produces a denial-of-service by providing a regular expression that

takes a very long time to evaluate.

• The attack exploits the fact that most regular expression

implementations have exponential time worst case complexity

• An attacker can thus provide such a regular expression to make the

server either slowing down or becoming unresponsive

The e�cieny of processing regular expressions is very important

8

Regex Denial-of-Service (ReDos) Attack

• ReDos is an algorithmic complexity attack

• It produces a denial-of-service by providing a regular expression that

takes a very long time to evaluate.

• The attack exploits the fact that most regular expression

implementations have exponential time worst case complexity

• An attacker can thus provide such a regular expression to make the

server either slowing down or becoming unresponsive

The e�cieny of processing regular expressions is very important

8

Regex Denial-of-Service (ReDos) Attack

• ReDos is an algorithmic complexity attack

• It produces a denial-of-service by providing a regular expression that

takes a very long time to evaluate.

• The attack exploits the fact that most regular expression

implementations have exponential time worst case complexity

• An attacker can thus provide such a regular expression to make the

server either slowing down or becoming unresponsive

The e�cieny of processing regular expressions is very important

8

Regex Denial-of-Service (ReDos) Attack

• ReDos is an algorithmic complexity attack

• It produces a denial-of-service by providing a regular expression that

takes a very long time to evaluate.

• The attack exploits the fact that most regular expression

implementations have exponential time worst case complexity

• An attacker can thus provide such a regular expression to make the

server either slowing down or becoming unresponsive

The e�cieny of processing regular expressions is very important

8

Regex Denial-of-Service (ReDos) Attack

• ReDos is an algorithmic complexity attack

• It produces a denial-of-service by providing a regular expression that

takes a very long time to evaluate.

• The attack exploits the fact that most regular expression

implementations have exponential time worst case complexity

• An attacker can thus provide such a regular expression to make the

server either slowing down or becoming unresponsive

The e�cieny of processing regular expressions is very important

8

What is a String Solver

String Operations

• Regular expression operations: intersection, union, di↵erences,

membership

• String replace and replaceAll

• String programs with integers.

•

9

String Operations

• Regular expression operations: intersection, union, di↵erences,

membership

• String replace and replaceAll

• String programs with integers.

•

9

String Operations

• Regular expression operations: intersection, union, di↵erences,

membership

• String replace and replaceAll

• String programs with integers.

•

9

What is the string constraint solving

The following is the grammar of the input language of a simple string

constraint solver:

s ::= v = c | v = v1 + v2 | v = replace(v1, r , v2) | v in r | s1; s2

The symbol c denotes a constant string, like ”Hello, world”. The symbol

r denotes a regular expression.

The concatenation function v1 + v2 concatenates the value of v1 and the

value of v2.

The replace operation replace(vstr , rpattern, vreplace) replace a substring in

vstr that matches the rpattern with the string of vreplace .

For instance, replace(“Hello world!”,H. ⇤ o,Hallo) is a new string “Hallo

world!”

replace(“Hello world!”,H. ⇤ o,Hallo) can also be another new string

“Hallorld!”

10

What is the string constraint solving

The following is the grammar of the input language of a simple string

constraint solver:

s ::= v = c | v = v1 + v2 | v = replace(v1, r , v2) | v in r | s1; s2

The symbol c denotes a constant string, like ”Hello, world”. The symbol

r denotes a regular expression.

The concatenation function v1 + v2 concatenates the value of v1 and the

value of v2.

The replace operation replace(vstr , rpattern, vreplace) replace a substring in

vstr that matches the rpattern with the string of vreplace .

For instance, replace(“Hello world!”,H. ⇤ o,Hallo) is a new string “Hallo

world!”

replace(“Hello world!”,H. ⇤ o,Hallo) can also be another new string

“Hallorld!”

10

What is the string constraint solving: An example

An example of string constraints:

v3 = v2 + v1;

v4 = replace(v3, v5, v6);

v5 in (.*)01(.*);

v6 = "111";

v3 in (0*)11(0*)

The string constraint solver should answer the question: If there exists

the values (constant strings) for the variables v1, v2, v3, v4, v5, v6 such

that all the equations and regular membership constraints are satisfied.

11

Model Checking Regular

Language Constraints

Model Checking Regular Language Constraints1

• How to solve regular language emptiness checking problem

• Mapping language emptiness checking problem to hardware model

checking problem using IC3.

1A work by Arlen Cox and Jason Leasure

12

Hardware model checking using IC3

Definition (Transition systems)
A finite transition system is described by a pair of propositional logic

formulas:

• an initial condition I (x̄) and

• a transition relation T (ī , x̄ , x̄ 0)

x̄ denotes a sequence of boolean variables x1, x2, . . . , xn

ī denotes a sequence of boolean variables i1, i2, . . . , in

I (x̄) is a boolean formula over the variables x̄ .

T (ī , x̄ , x̄ 0) is a boolean formula over the variables x̄ , x̄ 0, and ī

13

Hardware model checking using IC3

q1q0start

q2

i0

i1i0

Figure 1: An example of transition systems

Table 1: Encoding of states

q0 0 00 ¬x1 ^ ¬x0
q1 1 01 ¬x1 ^ x0

q2 2 10 x1 ^ ¬x0

Table 2: Encoding of labels

i0 0 ¬i
q1 1 i

14

Hardware model checking using IC3

q1q0start

q2

i0

i1i0

q0 0 00 ¬x1 ^ ¬x0
q1 1 01 ¬x1 ^ x0

q2 2 10 x1 ^ ¬x0

i0 0 ¬i
q1 1 i

The encoding of transition labels:

• (q0, i0, q1) is encoded as: t1 , ¬x1 ^ ¬x0| {z }
q0

^ ¬i|{z}
i0

^¬x 01 ^ x
0
0| {z }

q1

• (q1, i1, q2) is encoded as: t2 , ¬x1 ^ x0| {z }
q1

^ i|{z}
i1

^ x
0
1 ^ ¬x 00| {z }

q2

• (q2, i1, q0) is encoded as: t3 , x1 ^ ¬x0| {z }
q2

^ ¬i|{z}
i0

^¬x 01 ^ ¬x 00| {z }
q0

• I (x̄) = ¬x1 ^ ¬x2
• T (ī , x̄ , x̄ 0) = t1 _ t2 _ t3

15

Hardware model checking using IC3

q1q0start

q2

i0

i1i0

q0 0 00 ¬x1 ^ ¬x0
q1 1 01 ¬x1 ^ x0

q2 2 10 x1 ^ ¬x0

i0 0 ¬i
q1 1 i

The encoding of transition labels:

• (q0, i0, q1) is encoded as: t1 , ¬x1 ^ ¬x0| {z }
q0

^ ¬i|{z}
i0

^¬x 01 ^ x
0
0| {z }

q1

• (q1, i1, q2) is encoded as: t2 , ¬x1 ^ x0| {z }
q1

^ i|{z}
i1

^ x
0
1 ^ ¬x 00| {z }

q2

• (q2, i1, q0) is encoded as: t3 , x1 ^ ¬x0| {z }
q2

^ ¬i|{z}
i0

^¬x 01 ^ ¬x 00| {z }
q0

• I (x̄) = ¬x1 ^ ¬x2
• T (ī , x̄ , x̄ 0) = t1 _ t2 _ t3

15

Hardware model checking using IC3

q1q0start

q2

i0

i1i0

q0 0 00 ¬x1 ^ ¬x0
q1 1 01 ¬x1 ^ x0

q2 2 10 x1 ^ ¬x0

i0 0 ¬i
q1 1 i

The encoding of transition labels:

• (q0, i0, q1) is encoded as: t1 , ¬x1 ^ ¬x0| {z }
q0

^ ¬i|{z}
i0

^¬x 01 ^ x
0
0| {z }

q1

• (q1, i1, q2) is encoded as: t2 , ¬x1 ^ x0| {z }
q1

^ i|{z}
i1

^ x
0
1 ^ ¬x 00| {z }

q2

• (q2, i1, q0) is encoded as: t3 , x1 ^ ¬x0| {z }
q2

^ ¬i|{z}
i0

^¬x 01 ^ ¬x 00| {z }
q0

• I (x̄) = ¬x1 ^ ¬x2
• T (ī , x̄ , x̄ 0) = t1 _ t2 _ t3

15

Hardware model checking using IC3

The safety property of model checking is a set of “bad” states that the

system should not reach. We use a logic formula over state variables to

specify the safety property.

q1q0start

q2

i0

i1i0

Assume q2 is a bad state, the safety property is P(x̄) = x1 ^ ¬x0

16

Hardware model checking using IC3

The safety property of model checking is a set of “bad” states that the

system should not reach. We use a logic formula over state variables to

specify the safety property.

q1q0start

q2

i0

i1i0

Assume q2 is a bad state, the safety property is P(x̄) = x1 ^ ¬x0

16

Hardware model checking using IC3

The input of IC3 model checker is: I (x̄),T (ī , x̄ , x̄ 0),P(x̄).

The output of IC3 model checker is:

• sat, the bad states are not reachable from initial states

• unsat, there exists a bad state that are reachable from the initial

states.

17

Hardware model checking using IC3

The input of IC3 model checker is: I (x̄),T (ī , x̄ , x̄ 0),P(x̄).

The output of IC3 model checker is:

• sat, the bad states are not reachable from initial states

• unsat, there exists a bad state that are reachable from the initial

states.

17

Hardware model checking using IC3

Interested in the algorithm of IC3?

Read the paper: “Aaron R. Bradley: SAT-Based Model Checking without

Unrolling. VMCAI 2011: 70-87”

18

Hardware model checking using IC3

Interested in the algorithm of IC3?

Read the paper: “Aaron R. Bradley: SAT-Based Model Checking without

Unrolling. VMCAI 2011: 70-87”

18

Regular Expression (RE) Membership Checking

The grammar of membership checking language

RL ::= x 2 L | ¬RL | RL ^ RL | RL _ RL

Definition (NFA)
An NFA is 5-tuple A = (⌃,Q, I ,F ,�), where

• ⌃ is the alphabet,

• Q is a finite set of states,

• I ✓ Q is the set of initial states,

• F ✓ Q is the set of accepting states,

• � ✓ Q ⇥ ⌃⇥ Q is the transition relations.

19

Regular Expression (RE) Membership Checking

The grammar of membership checking language

RL ::= x 2 L | ¬RL | RL ^ RL | RL _ RL

Definition (NFA)
An NFA is 5-tuple A = (⌃,Q, I ,F ,�), where

• ⌃ is the alphabet,

• Q is a finite set of states,

• I ✓ Q is the set of initial states,

• F ✓ Q is the set of accepting states,

• � ✓ Q ⇥ ⌃⇥ Q is the transition relations.

19

The drawbacks of using NFAs for RE

State space explosion problem in NFA construction from regular

expressions, the intersection of two NFAs, and the complement of an

NFA.

Especially the complement of an NFA performed via the powerset

construction, which can result in an exponential increase in the number

of states.

20

Alternating Finite Automata (AFA)

Definition (AFA)
An AFA is a tuple M = (⌃,Q, q0,F ,�), where ⌃ is an alphabet, Q is a

finite set of states, q0 2 B+(Q) represents M’s initial state, F ✓ Q is a

set of accepting states, and � ✓ Q ⇥ ⌃ ! B+(Q).

B+(Q) denotes the set of positive Boolean formulae over Q, that is the

set of Boolean formulae built from true, false, and the members of Q

using the binary connectives ^ and _.

21

The operations over AFAs

Let M1 = (⌃,Q1, I1,F1,�1) and M2 = (⌃,Q2, I2,F2,�2) be two AFAs.

• The intersection of M1 and M2 is

(⌃,Q1 [Q2, I1 ^ I2,F1 [F2,�1 [�2)

• The union of M1 and M2 is (⌃,Q1 [Q2, I1 _ I2,F1 [F2,�1 [�2)

• The complement of M1 is

(⌃,Q1, Ī1,Q1\F1, {(x , a) 7! p̄ : �1(x , a) = p}). p̄ replaces every ^
with _ (and vice versa).

q0start q1

a

a

M1

q2start q3 q4
a a

a

M2

M1 = ({a}, {q0, q1}, q0, {q0}, {(q0, a, q1), (q1, a, q0)})
M2 = ({a}, {q2, q3, q4}, q2, {q2}, {(q2, a, q3), (q3, a, q4), (q4, a, q2)})

The intersection of M1 and M2 is: ({a}, {q0, q1, q2, q3, q4}, q0 ^
q2, {q0, a, q2}, {(q0, a, q1), (q1, a, q0), (q2, a, q3), (q3, a, q4), (q4, a, q2)})

22

The operations over AFAs

Let M1 = (⌃,Q1, I1,F1,�1) and M2 = (⌃,Q2, I2,F2,�2) be two AFAs.

• The intersection of M1 and M2 is

(⌃,Q1 [Q2, I1 ^ I2,F1 [F2,�1 [�2)

• The union of M1 and M2 is (⌃,Q1 [Q2, I1 _ I2,F1 [F2,�1 [�2)

• The complement of M1 is

(⌃,Q1, Ī1,Q1\F1, {(x , a) 7! p̄ : �1(x , a) = p}). p̄ replaces every ^
with _ (and vice versa).

q0start q1

a

a

M1

q2start q3 q4
a a

a

M2

M1 = ({a}, {q0, q1}, q0, {q0}, {(q0, a, q1), (q1, a, q0)})
M2 = ({a}, {q2, q3, q4}, q2, {q2}, {(q2, a, q3), (q3, a, q4), (q4, a, q2)})

The intersection of M1 and M2 is: ({a}, {q0, q1, q2, q3, q4}, q0 ^
q2, {q0, a, q2}, {(q0, a, q1), (q1, a, q0), (q2, a, q3), (q3, a, q4), (q4, a, q2)})

22

The operations over AFAs

Let M1 = (⌃,Q1, I1,F1,�1) and M2 = (⌃,Q2, I2,F2,�2) be two AFAs.

• The intersection of M1 and M2 is

(⌃,Q1 [Q2, I1 ^ I2,F1 [F2,�1 [�2)

• The union of M1 and M2 is (⌃,Q1 [Q2, I1 _ I2,F1 [F2,�1 [�2)

• The complement of M1 is

(⌃,Q1, Ī1,Q1\F1, {(x , a) 7! p̄ : �1(x , a) = p}). p̄ replaces every ^
with _ (and vice versa).

q0start q1

a

a

M1

q2start q3 q4
a a

a

M2

M1 = ({a}, {q0, q1}, q0, {q0}, {(q0, a, q1), (q1, a, q0)})
M2 = ({a}, {q2, q3, q4}, q2, {q2}, {(q2, a, q3), (q3, a, q4), (q4, a, q2)})

The intersection of M1 and M2 is: ({a}, {q0, q1, q2, q3, q4}, q0 ^
q2, {q0, a, q2}, {(q0, a, q1), (q1, a, q0), (q2, a, q3), (q3, a, q4), (q4, a, q2)}) 22

The operations over AFAs

q0start q1

a

a

M1

q2start q3 q4
a a

a

M2

M1 = ({a}, {q0, q1}, q0, {q0}, {(q0, a, q1), (q1, a, q0)})
M2 = ({a}, {q2, q3, q4}, q2, {q2}, {(q2, a, q3), (q3, a, q4), (q4, a, q2)})

The intersection of M1 and M2 is: ({a}, {q0, q1, q2, q3, q4}, q0 ^
q2, {q0, a, q2}, {(q0, a, q1), (q1, a, q0), (q2, a, q3), (q3, a, q4), (q4, a, q2)})

An accepting run of the intersection of M1 and M2 is the following:

(q0^q2)
a�! (q1, q3)

a�! (q0, q4)
a�! (q1, q2)

a�! (q0, q3)
a�! (q1, q4)

a�! (q0, q2).

This run accepts the word “aaaaaa”

23

The operations over AFAs

q0start q1

a

a

M1

q2start q3 q4
a a

a

M2

M1 = ({a}, {q0, q1}, q0, {q0}, {(q0, a, q1), (q1, a, q0)})
M2 = ({a}, {q2, q3, q4}, q2, {q2}, {(q2, a, q3), (q3, a, q4), (q4, a, q2)})

The intersection of M1 and M2 is: ({a}, {q0, q1, q2, q3, q4}, q0 ^
q2, {q0, a, q2}, {(q0, a, q1), (q1, a, q0), (q2, a, q3), (q3, a, q4), (q4, a, q2)})

An accepting run of the intersection of M1 and M2 is the following:

(q0^q2)
a�! (q1, q3)

a�! (q0, q4)
a�! (q1, q2)

a�! (q0, q3)
a�! (q1, q4)

a�! (q0, q2).

This run accepts the word “aaaaaa”

23

The Translation from AFAs to IC3 inputs

Let M = (⌃,Q, I ,F ,�) be an AFA.

• for each q 2 Q, its binary encoding is denoted as B[q]

• for each a 2 ⌃, its binary encoding is denoted as B[a]

The translation is the following:

• I (x̄) translated from M is: I [qi 7! B[qi]], for all qi 2 Q

• T (x̄ , ī , x̄ 0) translated from M is:

^

qi2Q

B[qi] =

_

a2⌃

B[a] ^�(qi , a)[qj 7! B[qj]]

!

• P(x̄) translated from M is:
⇣W

qi2F B[qi]
⌘

24

The Translation from AFAs to IC3 inputs

Let M = (⌃,Q, I ,F ,�) be an AFA.

• for each q 2 Q, its binary encoding is denoted as B[q]

• for each a 2 ⌃, its binary encoding is denoted as B[a]

The translation is the following:

• I (x̄) translated from M is: I [qi 7! B[qi]], for all qi 2 Q

• T (x̄ , ī , x̄ 0) translated from M is:

^

qi2Q

B[qi] =

_

a2⌃

B[a] ^�(qi , a)[qj 7! B[qj]]

!

• P(x̄) translated from M is:
⇣W

qi2F B[qi]
⌘

24

Experiments

This method is compared with 3 tools:

• BRICS [3]

• DPRLE solver [2]

• Norn [1]

The first benchmark:

• regular expressions from http://regexlib.com

• language intersection

• language di↵erence

25

http://regexlib.com

Experiments

26

Experiments

The second benchmark: increasing n in the following regular expressions.

• satisfiable di↵erence

(x 2 ^ · [01]⇤ · 1 · [01]{n} · $ ^ x /2 ^ · [01] ⇤ ·0 · [01]{n � 1} · $),
• unsatisfiable di↵erence

(x 2 ^ · [01]⇤ · 1 · 1 · [01]{n} · $ ^ x /2 ^ · [01] ⇤ ·1 · [01]{n + 1} · $),
• satisfiable intersection

(x 2 ^ · [01]⇤ · 1 · [01]{n} · $ ^ x 2 ^ · [01] ⇤ ·0 · [01]{n � 1} · $),
• unsatisfiable intersection

(x 2 ^ · [01]⇤ · 1 · [01]{n} · $ ^ x 2 ^ · [01] ⇤ ·0 · [01]{n} · $).

27

Experiments

28

Paper List for String Solvers

Paper List for String Solvers

Interested in more e�cient algorithms solving regular constraints, like

x 2 R?

• Caleb Stanford, Margus Veanes, Nikolaj Bjørner: Symbolic Boolean

derivatives for e�ciently solving extended regular expression

constraints. 620-635

• Loris D’Antoni, Zachary Kincaid, Fang Wang: A Symbolic Decision

Procedure for Symbolic Alternating Finite Automata. MFPS 2018:

79-99

29

Paper List for String Solvers

Interested in the implementation of other string operations?

• Taolue Chen, Matthew Hague, Anthony W. Lin, Philipp Rümmer,

Zhilin Wu. Decision procedures for path feasibility of

string-manipulating programs with complex operations. Proc. ACM

Program. Lang. 3(POPL): 49:1-49:30 (2019)

• Blake Loring, Duncan Mitchell, Johannes Kinder. Sound regular

expression semantics for dynamic symbolic execution of JavaScript.

425-438.

30

Paper List for String Solvers

Interested in the decision procedure mixed with other data types?

• Taolue Chen, Matthew Hague, Jinlong He, Denghang Hu, Anthony

Widjaja Lin, Philipp Rümmer, Zhilin Wu. A Decision Procedure for

Path Feasibility of String Manipulating Programs with Integer Data

Type. ATVA 2020: 325-342. selected

• Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi

Diep, Julian Dolby, Petr Janku, Hsin-Hung Lin, Lukás Hoĺık,

Wei-Cheng Wu: E�cient handling of string-number conversion.

943-957.

31

Paper List for String Solvers

Interested in the application of string solvers in computer security?

• F. Yu, M. Alkhalaf, T. Bultan, and O. H. Ibarra. Automata-based

symbolic string analysis for vulnerability detection. Formal Methods

Syst. Des., 44(1):44–70, 2014.

• M. Trinh, D. Chu, and J. Ja↵ar. S3: A symbolic string solver for

vulnerability detection in web applications. In G. Ahn, M. Yung, and

N. Li, editors, Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, Scottsdale, AZ, USA,

November 3-7, 2014, pages 1232–1243. ACM, 2014.

32

Thanks! Q & A

33

References i

References

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás

Hoĺık, Ahmed Rezine, Philipp Rümmer, and Jari Stenman. Norn: An

SMT solver for string constraints. In Daniel Kroening and Corina S.

Pasareanu, editors, Computer Aided Verification - 27th International

Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,

Proceedings, Part I, volume 9206 of Lecture Notes in Computer

Science, pages 462–469. Springer, 2015.

34

References ii

[2] Pieter Hooimeijer and Westley Weimer. A decision procedure for

subset constraints over regular languages. In Michael Hind and Amer

Diwan, editors, Proceedings of the 2009 ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2009,

Dublin, Ireland, June 15-21, 2009, pages 188–198. ACM, 2009.

[3] Anders Møller. dk.brics.automaton - finite-state automata and regular

expressions for java. 2010. URL https://cs.au.dk/~amoeller/.

35

https://cs.au.dk/~amoeller/

	Why strings are important in Computer Systems
	Cross Site Scripting Attack
	Amazon Cloud Access Control Policies

	What is a String Solver
	Model Checking Regular Language Constraints
	Paper List for String Solvers
	References

